Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Sci Rep ; 9(1): 15126, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31641210

RESUMO

Diet composition impacts metabolic and cardiovascular health with high caloric diets contributing to obesity related disorders. Dietary interventions such as caloric restriction exert beneficial effects in the cardiovascular system, but alteration of which specific nutrient is responsible is less clear. This study investigates the effects of a low protein diet (LPD) on morphology, tissue composition and function of the neonatal and adult mouse heart. Mice were subjected to LPD (8.8% protein) or standard protein diet (SPD, 22% protein) throughout intrauterine and postnatal life. At birth LPD female but not male offspring exhibit reduced body weight whereas heart weight was unchanged in both sexes. Cardiomyocyte cross sectional area was increased in newborn LPD females compared to SPD, whereas proliferation, cellular tissue composition and vascularization were unaffected. Adult female mice on LPD exhibit reduced body weight but normal heart weight compared to SPD controls. Echocardiography revealed normal left ventricular contractility in LPD animals. Histology showed reduced interstitial fibrosis, lower cardiomyocyte volume and elevated numbers of cardiomyocyte and non-myocyte nuclei per tissue area in adult LPD versus SPD myocardium. Furthermore, capillary density was increased in LPD hearts. In conclusion, pre- and postnatal dietary protein restriction in mice causes a potentially beneficial myocardial remodeling.


Assuntos
Envelhecimento/fisiologia , Coração/fisiologia , Aminoácidos/deficiência , Animais , Animais Recém-Nascidos , Peso Corporal , Capilares/fisiologia , Contagem de Células , Proliferação de Células , Tamanho Celular , Dieta com Restrição de Proteínas , Comportamento Alimentar , Feminino , Coração/anatomia & histologia , Ventrículos do Coração , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/citologia , Neovascularização Fisiológica , Tamanho do Órgão , Gravidez , Caracteres Sexuais , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
J Am Heart Assoc ; 6(8)2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28778941

RESUMO

BACKGROUND: Fetal growth impacts cardiovascular health throughout postnatal life in humans. Various animal models of intrauterine growth restriction exhibit reduced heart size at birth, which negatively influences cardiac function in adulthood. The mechanistic target of rapamycin complex 1 (mTORC1) integrates nutrient and growth factor availability with cell growth, thereby regulating organ size. This study aimed at elucidating a possible involvement of mTORC1 in intrauterine growth restriction and prenatal heart growth. METHODS AND RESULTS: We inhibited mTORC1 in fetal mice by rapamycin treatment of pregnant dams in late gestation. Prenatal rapamycin treatment reduces mTORC1 activity in various organs at birth, which is fully restored by postnatal day 3. Rapamycin-treated neonates exhibit a 16% reduction in body weight compared with vehicle-treated controls. Heart weight decreases by 35%, resulting in a significantly reduced heart weight/body weight ratio, smaller left ventricular dimensions, and reduced cardiac output in rapamycin- versus vehicle-treated mice at birth. Although proliferation rates in neonatal rapamycin-treated hearts are unaffected, cardiomyocyte size is reduced, and apoptosis increased compared with vehicle-treated neonates. Rapamycin-treated mice exhibit postnatal catch-up growth, but body weight and left ventricular mass remain reduced in adulthood. Prenatal mTORC1 inhibition causes a reduction in cardiomyocyte number in adult hearts compared with controls, which is partially compensated for by an increased cardiomyocyte volume, resulting in normal cardiac function without maladaptive left ventricular remodeling. CONCLUSIONS: Prenatal rapamycin treatment of pregnant dams represents a new mouse model of intrauterine growth restriction and identifies an important role of mTORC1 in perinatal cardiac growth.


Assuntos
Retardo do Crescimento Fetal/induzido quimicamente , Coração Fetal/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Efeitos Tardios da Exposição Pré-Natal , Sirolimo/farmacologia , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Débito Cardíaco/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Feminino , Retardo do Crescimento Fetal/metabolismo , Retardo do Crescimento Fetal/patologia , Retardo do Crescimento Fetal/fisiopatologia , Coração Fetal/crescimento & desenvolvimento , Coração Fetal/patologia , Idade Gestacional , Proteína Homeobox Nkx-2.5/genética , Liases/deficiência , Liases/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Tamanho do Órgão , Organogênese/efeitos dos fármacos , Gravidez , Regiões Promotoras Genéticas , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
3.
Genom Data ; 9: 145-7, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27583204

RESUMO

The postnatal mammalian heart is considered a terminally differentiated organ unable to efficiently regenerate after injury. In contrast, we have recently shown a remarkable regenerative capacity of the prenatal heart using myocardial tissue mosaicism for mitochondrial dysfunction in mice. This model is based on inactivation of the X-linked gene encoding holocytochrome c synthase (Hccs) specifically in the developing heart. Loss of HCCS activity results in respiratory chain dysfunction, disturbed cardiomyocyte differentiation and reduced cell cycle activity. The Hccs gene is subjected to X chromosome inactivation, such that in females heterozygous for the heart conditional Hccs knockout approximately 50% of cardiac cells keep the defective X chromosome active and develop mitochondrial dysfunction while the other 50% remain healthy. During heart development the contribution of HCCS deficient cells to the cardiac tissue decreases from 50% at mid-gestation to 10% at birth. This regeneration of the prenatal heart is mediated by increased proliferation of the healthy cardiac cell population, which compensates for the defective cells allowing the formation of a fully functional heart by birth. Here we performed microarray RNA expression analyses on 13.5 dpc control and heterozygous Hccs knockout hearts to identify molecular mechanisms that drive embryonic heart regeneration. Array data have been deposited in the Gene Expression Omnibus (GEO) database under accession number GSE72054.

4.
Arterioscler Thromb Vasc Biol ; 36(8): 1534-48, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27283742

RESUMO

OBJECTIVE: Drug-eluting coronary stents reduce restenosis rate and late lumen loss compared with bare-metal stents; however, drug-eluting coronary stents may delay vascular healing and increase late stent thrombosis. The peroxisome proliferator-activated receptor-delta (PPARδ) exhibits actions that could favorably influence outcomes after drug-eluting coronary stents placement. APPROACH AND RESULTS: Here, we report that PPARδ ligand-coated stents strongly reduce the development of neointima and luminal narrowing in a rabbit model of experimental atherosclerosis. Inhibition of inflammatory gene expression and vascular smooth muscle cell (VSMC) proliferation and migration, prevention of thrombocyte activation and aggregation, and proproliferative effects on endothelial cells were identified as key mechanisms for the prevention of restenosis. Using normal and PPARδ-depleted VSMCs, we show that the observed effects of PPARδ ligand GW0742 on VSMCs and thrombocytes are PPARδ receptor dependent. PPARδ ligand treatment induces expression of pyruvate dehydrogenase kinase isozyme 4 and downregulates the glucose transporter 1 in VSMCs, thus impairing the ability of VSMCs to provide the increased energy demands required for growth factor-stimulated proliferation and migration. CONCLUSIONS: In contrast to commonly used drugs for stent coating, PPARδ ligands not only inhibit inflammatory response and proliferation of VSMCs but also prevent thrombocyte activation and support vessel re-endothelialization. Thus, pharmacological PPARδ activation could be a promising novel strategy to improve drug-eluting coronary stents outcomes.


Assuntos
Angioplastia com Balão/instrumentação , Aorta/efeitos dos fármacos , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Fármacos Cardiovasculares/administração & dosagem , Stents Farmacológicos , PPAR delta/agonistas , Esteroides/administração & dosagem , Trombose/prevenção & controle , Angioplastia com Balão/efeitos adversos , Animais , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Doença da Artéria Coronariana/terapia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Metabolismo Energético/efeitos dos fármacos , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Neointima , PPAR delta/deficiência , PPAR delta/genética , PPAR delta/metabolismo , Ativação Plaquetária/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Ratos , Ratos Sprague-Dawley , Reepitelização/efeitos dos fármacos , Recidiva , Transdução de Sinais/efeitos dos fármacos , Trombose/etiologia , Trombose/metabolismo , Trombose/patologia , Fatores de Tempo
5.
J Mol Cell Cardiol ; 97: 1-14, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27106802

RESUMO

Whereas adult cardiomyocytes are highly susceptible to stress, cardiomyocytes in the prenatal heart appear to be rather resistant. To investigate how embryonic cardiomyocytes respond to metabolic stress in vivo, we utilized tissue mosaicism for mitochondrial dysfunction in 13.5dpc mouse hearts. The latter is based on inactivation of the X-linked gene encoding Holocytochrome c synthase (Hccs), which is essential for mitochondrial respiration. In heterozygous heart conditional Hccs knockout females (cHccs(+/-)) random X chromosomal inactivation results in a mosaic of healthy and HCCS deficient cells in the myocardium. Microarray RNA expression analyses identified genes involved in unfolded protein response (UPR) and programmed cell death as differentially expressed in cHccs(+/-) versus control embryonic hearts. Activation of the UPR is localized to HCCS deficient cardiomyocytes but does not involve ER stress pathways, suggesting that it is caused by defective mitochondria. Consistently, mitochondrial chaperones, such as HSP10 and HSP60, but not ER chaperones are induced in defective cells. Mitochondrial dysfunction can result in oxidative stress, but no evidence for excessive ROS (reactive oxygen species) production was observed in cHccs(+/-) hearts. Instead, the antioxidative proteins SOD2 and PRDX3 are induced, suggesting that ROS detoxification prevents oxidative damage in HCCS deficient cardiomyocytes. Mitochondrial dysfunction and unrestricted UPR can induce cell death, and we detected the initiation of upstream events of both intrinsic as well as extrinsic apoptosis in cHccs(+/-) hearts. Cell death is not executed, however, suggesting the activation of antiapoptotic mechanisms. Whereas most apoptosis inhibitors are either unchanged or downregulated in HCCS deficient cardiomyocytes, Bcl-2 and ARC (apoptosis repressor with caspase recruitment domain) are induced. Given that ARC can inhibit both apoptotic pathways as well as necrosis and attenuates UPR, we generated cHccs(+/-) embryos on an Arc knockout background (cHccs(+/-),Arc(-/-)). Surprisingly, the absence of ARC does not induce cell death in embryonic or postnatal HCCS deficient cardiomyocytes and adult cHccs(+/-),Arc(-/-) mice exhibit normal cardiac morphology and function. Taken together, our data demonstrate an impressive plasticity of embryonic cardiomyocytes to respond to metabolic stress, the loss of which might be involved in the high susceptibility of postnatal cardiomyocytes to cell death.


Assuntos
Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Animais , Antioxidantes/metabolismo , Apoptose/genética , Autofagia , Sobrevivência Celular/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Feminino , Perfilação da Expressão Gênica , Genótipo , Coração/embriologia , Liases/deficiência , Liases/genética , Liases/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Miocárdio/metabolismo , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo , Regeneração/genética , Transdução de Sinais , Resposta a Proteínas não Dobradas
6.
EMBO Mol Med ; 7(5): 562-76, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25759365

RESUMO

Frameshift mutations in the TTN gene encoding titin are a major cause for inherited forms of dilated cardiomyopathy (DCM), a heart disease characterized by ventricular dilatation, systolic dysfunction, and progressive heart failure. To date, there are no specific treatment options for DCM patients but heart transplantation. Here, we show the beneficial potential of reframing titin transcripts by antisense oligonucleotide (AON)-mediated exon skipping in human and murine models of DCM carrying a previously identified autosomal-dominant frameshift mutation in titin exon 326. Correction of TTN reading frame in patient-specific cardiomyocytes derived from induced pluripotent stem cells rescued defective myofibril assembly and stability and normalized the sarcomeric protein expression. AON treatment in Ttn knock-in mice improved sarcomere formation and contractile performance in homozygous embryos and prevented the development of the DCM phenotype in heterozygous animals. These results demonstrate that disruption of the titin reading frame due to a truncating DCM mutation can be restored by exon skipping in both patient cardiomyocytes in vitro and mouse heart in vivo, indicating RNA-based strategies as a potential treatment option for DCM.


Assuntos
Cardiomiopatia Dilatada/fisiopatologia , Conectina/metabolismo , Éxons , Mutação da Fase de Leitura , Regulação da Expressão Gênica/efeitos dos fármacos , Oligonucleotídeos Antissenso/metabolismo , Animais , Cardiomiopatia Dilatada/terapia , Células Cultivadas , Conectina/genética , Técnicas Citológicas , Modelos Animais de Doenças , Terapia Genética/métodos , Humanos , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Miofibrilas/metabolismo , Miofibrilas/fisiologia , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico
7.
Cardiovasc Res ; 106(1): 43-54, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25661081

RESUMO

AIMS: Foetal growth has been proposed to influence cardiovascular health in adulthood, a process referred to as foetal programming. Indeed, intrauterine growth restriction in animal models alters heart size and cardiomyocyte number in the perinatal period, yet the consequences for the adult or challenged heart are largely unknown. The aim of this study was to elucidate postnatal myocardial growth pattern, left ventricular function, and stress response in the adult heart after neonatal cardiac hypoplasia in mice. METHODS AND RESULTS: Utilizing a new mouse model of impaired cardiac development leading to fully functional but hypoplastic hearts at birth, we show that myocardial mass is normalized until early adulthood by accelerated physiological cardiomyocyte hypertrophy. Compensatory hypertrophy, however, cannot be maintained upon ageing, resulting in reduced organ size without maladaptive myocardial remodelling. Angiotensin II stress revealed aberrant cardiomyocyte growth kinetics in adult hearts after neonatal hypoplasia compared with normally developed controls, characterized by reversible overshooting hypertrophy. This exaggerated growth mainly depends on STAT3, whose inhibition during angiotensin II treatment reduces left ventricular mass in both groups but causes contractile dysfunction in developmentally impaired hearts only. Whereas JAK/STAT3 inhibition reduces cardiomyocyte cross-sectional area in the latter, it prevents fibrosis in control hearts, indicating fundamentally different mechanisms of action. CONCLUSION: Impaired prenatal development leading to neonatal cardiac hypoplasia alters postnatal cardiac growth and stress response in vivo, thereby linking foetal programming to organ size control in the heart.


Assuntos
Animais Recém-Nascidos/crescimento & desenvolvimento , Desenvolvimento Embrionário/fisiologia , Desenvolvimento Fetal/fisiologia , Coração/embriologia , Coração/fisiopatologia , Estresse Fisiológico/fisiologia , Envelhecimento/fisiologia , Angiotensina II/farmacologia , Animais , Feminino , Coração/efeitos dos fármacos , Hipertrofia , Liases/deficiência , Liases/genética , Liases/fisiologia , Camundongos , Camundongos Knockout , Modelos Animais , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Tamanho do Órgão/fisiologia , Fator de Transcrição STAT3/fisiologia
8.
Int J Cardiol ; 171(1): 24-30, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24315344

RESUMO

BACKGROUND: Familial restrictive cardiomyopathy (RCM) caused by a single gene mutation is the least common of the inherited cardiomyopathies. Only a few RCM-causing mutations have been described. Most mutations causing RCM are located in sarcomere protein genes which also cause hypertrophic cardiomyopathy (HCM). Other genes associated with RCM include the desmin and familial amyloidosis genes. In the present study we describe familial RCM with severe heart failure triggered by a de novo mutation in TTN, encoding the huge muscle filament protein titin. METHODS AND RESULTS: Family members underwent physical examination, ECG and Doppler echocardiogram studies. The family comprised 6 affected individuals aged 12-35 years. Linkage to candidate loci was performed, followed by gene sequencing. Candidate loci/gene analysis excluded 18 candidate genes but showed segregation with a common haplotype surrounding the TTN locus. Sequence analysis identified a de novo mutation within exon 266 of the TTN gene, resulting in the replacement of tyrosine by cysteine. p.Y7621C affects a highly conserved region in the protein within a fibronectin-3 domain, belonging to the A/I junction region of titin. No other disease-causing mutation was identified in cardiomyopathy genes by whole exome sequencing. CONCLUSIONS: Our study shows, for the first time, that mutations in TTN can cause restrictive cardiomyopathy. The giant filament titin is considered to be a determinant of a resting tension of the sarcomere and this report provides genetic evidence of its crucial role in diastolic function.


Assuntos
Cardiomiopatia Restritiva/diagnóstico , Cardiomiopatia Restritiva/genética , Conectina/genética , Mutação/genética , Adolescente , Adulto , Sequência de Aminoácidos , Criança , Conectina/química , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Linhagem , Estrutura Secundária de Proteína , Adulto Jovem
9.
Circ Cardiovasc Genet ; 5(4): 400-11, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22781308

RESUMO

BACKGROUND: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited cardiac disorder mainly caused by dominant mutations in several components of the cardiac desmosome including plakophilin-2 (PKP2), the most prevalent disease gene. Little is known about the underlying genetic and molecular mechanisms of missense mutations located in the armadillo (ARM) domains of PKP2, as well as their consequences on human cardiac pathology. METHODS AND RESULTS: We focused on in vivo and in vitro studies of the PKP2 founder mutation c.2386T>C (p.C796R), and demonstrated in cardiac tissue from 2 related mutation carriers a patchy expression pattern ranging from unchanged to totally absent immunoreactive signals of PKP2 and other desmosomal proteins. In vitro expression analysis of mutant PKP2 in cardiac derived HL-1 cells revealed unstable proteins that fail to interact with desmoplakin and are targeted by degradation involving calpain proteases. Bacterial expression, crystallization, and structural modeling of mutated proteins impacting different ARM domains and helices of PKP2 confirmed their instability and degradation, resulting in the same remaining protein fragment that was crystallized and used to model the entire ARM domain of PKP2. CONCLUSIONS: The p.C796R and other ARVC-related PKP2 mutations indicate loss of function effects by intrinsic instability and calpain proteases mediated degradation in in vitro model systems, suggesting haploinsufficiency as the most likely cause for the genesis of dominant ARVC due to mutations in PKP2.


Assuntos
Displasia Arritmogênica Ventricular Direita/genética , Mutação de Sentido Incorreto/genética , Placofilinas/genética , Calpaína/metabolismo , Linhagem Celular , Cristalização , Desmoplaquinas/metabolismo , Desmossomos/genética , Feminino , Imunofluorescência , Heterozigoto , Humanos , Masculino , Microscopia Confocal , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Miocárdio/patologia , Linhagem , Placofilinas/química , Ligação Proteica/genética , Estabilidade Proteica , Proteólise , Sequências Repetitivas de Aminoácidos , Reprodutibilidade dos Testes
10.
Nat Med ; 18(5): 766-73, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22466703

RESUMO

Alternative splicing has a major role in cardiac adaptive responses, as exemplified by the isoform switch of the sarcomeric protein titin, which adjusts ventricular filling. By positional cloning using a previously characterized rat strain with altered titin mRNA splicing, we identified a loss-of-function mutation in the gene encoding RNA binding motif protein 20 (Rbm20) as the underlying cause of pathological titin isoform expression. The phenotype of Rbm20-deficient rats resembled the pathology seen in individuals with dilated cardiomyopathy caused by RBM20 mutations. Deep sequencing of the human and rat cardiac transcriptome revealed an RBM20-dependent regulation of alternative splicing. In addition to titin (TTN), we identified a set of 30 genes with conserved splicing regulation between humans and rats. This network is enriched for genes that have previously been linked to cardiomyopathy, ion homeostasis and sarcomere biology. Our studies emphasize the key role of post-transcriptional regulation in cardiac function and provide mechanistic insights into the pathogenesis of human heart failure.


Assuntos
Cardiomiopatia Dilatada/genética , Proteínas Musculares/genética , Proteínas Quinases/genética , Splicing de RNA , Proteínas de Ligação a RNA/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Sequência de Bases , Conectina , Humanos , Proteínas com Domínio LIM/genética , Dados de Sequência Molecular , Mutação , Proteínas de Ligação a RNA/fisiologia , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos F344
11.
Circ Cardiovasc Genet ; 4(4): 367-74, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21551322

RESUMO

BACKGROUND: Left ventricular noncompaction of the myocardium (LVNC) has been recognized as a cardiomyopathy with a genetic etiology. Mutations in genes encoding sarcomere proteins were shown to be associated with LVNC. We evaluated the potential clinical impact of genetic analysis of sarcomere genes in patients with LVNC. METHODS AND RESULTS: We identified 5 mutations in cardiac myosin-binding protein C (MYBPC3) and 2 mutations in α-tropomyosin (TPM1) in a cohort of unrelated adult probands with isolated LVNC. The mutations in MYBPC3 and TPM1 and in 6 other previously reported sarcomere genes in this cohort resulted in a total of 18 (29%) heterozygous mutations in 63 probands. ß-myosin heavy chain (MYH7) was the most prevalent disease gene and accounts for 13% of cases, followed by MYBPC3 (8%). Comparing sarcomere mutation-positive and mutation-negative LVNC probands showed no significant differences in terms of average age, myocardial function, and presence of heart failure or tachyarrhythmias at initial presentation or at follow-up. Familial disease was found in 16 probands of whom 8 were sarcomere mutation positive. Nonpenetrance was detected in 2 of 8 mutation-positive families with LVNC. CONCLUSIONS: Mutations in sarcomere genes account for a significant (29%) proportion of cases of isolated LVNC in this cohort. The distribution of disease genes confirms genetic heterogeneity and opens new perspectives in genetic testing in patients with LVNC and their relatives at high risk of inheriting the cardiomyopathy. The presence or absence of a sarcomere gene mutation in LVNC cannot be related to the clinical phenotype.


Assuntos
Cardiomiopatias/genética , Proteínas de Transporte/genética , Mutação , Sarcômeros/genética , Tropomiosina/genética , Disfunção Ventricular Esquerda , Estudos de Coortes , Análise Mutacional de DNA , Humanos , Linhagem , Penetrância , Fenótipo
12.
Circ Cardiovasc Genet ; 4(1): 43-50, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21127202

RESUMO

BACKGROUND: Ebstein anomaly is a rare congenital heart malformation characterized by adherence of the septal and posterior leaflets of the tricuspid valve to the underlying myocardium. An association between Ebstein anomaly with left ventricular noncompaction (LVNC) and mutations in MYH7 encoding ß-myosin heavy chain has been shown; in this report, we have screened for MYH7 mutations in a cohort of probands with Ebstein anomaly in a large population-based study. METHODS AND RESULTS: Mutational analysis in a cohort of 141 unrelated probands with Ebstein anomaly was performed by next-generation sequencing and direct DNA sequencing of MYH7. Heterozygous mutations were identified in 8 of 141 samples (6%). Seven distinct mutations were found; 5 were novel and 2 were known to cause hypertrophic cardiomyopathy. All mutations except for 1 3-bp deletion were missense mutations; 1 was a de novo change. Mutation-positive probands and family members showed various congenital heart malformations as well as LVNC. Among 8 mutation-positive probands, 6 had LVNC, whereas among 133 mutation-negative probands, none had LVNC. The frequency of MYH7 mutations was significantly different between probands with and without LVNC accompanying Ebstein anomaly (P<0.0001). LVNC segregated with the MYH7 mutation in the pedigrees of 3 of the probands, 1 of which also included another individual with Ebstein anomaly. CONCLUSIONS: Ebstein anomaly is a congenital heart malformation that is associated with mutations in MYH7. MYH7 mutations are predominantly found in Ebstein anomaly associated with LVNC and may warrant genetic testing and family evaluation in this subset of patients.


Assuntos
Miosinas Cardíacas/genética , Anomalia de Ebstein/genética , Mutação/genética , Cadeias Pesadas de Miosina/genética , Sarcômeros/genética , Adolescente , Adulto , Idoso , Sequência de Aminoácidos , Miosinas Cardíacas/química , Criança , Pré-Escolar , Estudos de Coortes , Anomalia de Ebstein/diagnóstico por imagem , Família , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Cadeias Pesadas de Miosina/química , Linhagem , Ultrassonografia , Adulto Jovem
13.
Heart Fail Clin ; 6(2): 161-77, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20347785

RESUMO

Arrhythmogenic right ventricular cardiomyopathy (ARVC) originally emerged as a pathologic diagnosis based on distinctive autopsy findings in cases of premature sudden death. Subsequently these characteristic pathologic features were associated with ventricular tachycardia of right ventricular origin and syncope. ARVC is a rare condition and our understanding of the disorder has been confounded by multiple small, highly selected series. Driven by both family studies and improved non-invasive imaging tools the clinical diagnosis of ARVC has broadened, in some instances extending far beyond the original limits of the syndrome. In recent years false-positive diagnoses have increased, thus stimulating investigators to move toward more rigorous clinical criteria. Despite the efforts of a Task Force to establish a baseline for subsequent empiric testing, these criteria have often inadvertently been used as a definitive diagnostic tool in the absence of prospective data. Recent genetic studies have revealed substantial etiologic heterogeneity, and ARVC is emerging as a syndrome consisting of multiple discrete disease entities, in part explaining the tremendous variation in clinical features and natural history seen in prior reports.


Assuntos
Displasia Arritmogênica Ventricular Direita , Displasia Arritmogênica Ventricular Direita/diagnóstico , Displasia Arritmogênica Ventricular Direita/tratamento farmacológico , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/fisiopatologia , Morte Súbita Cardíaca , Desmossomos , Diagnóstico Diferencial , Progressão da Doença , Ventrículos do Coração/patologia , Humanos , Mutação , Fatores de Risco
14.
Int J Cardiol ; 145(3): 432-7, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-19539385

RESUMO

BACKGROUND: Stimulation of collateral artery growth is a promising therapeutic option for patients with coronary artery disease. External counterpulsation is a non-invasive technique suggested to promote the growth of myocardial collateral arteries via increase of shear stress. The Art.Net.2 Trial tests invasively and functionally for the first time the hypothesis whether a treatment course with external counterpulsation (over 7 weeks) can induce the growth of myocardial collateral arteries. METHODS: This study is designed as a prospective, controlled, proof-of-concept study. Inclusion criteria are (1) age 40 to 80 years, (2) stable coronary disease, (3) a residual significant stenosis of at least one epicardial artery and (4) a positive ischemic stress-test for the region of interest. As primary endpoint serves the pressure-derived collateral flow index (CFIp), the invasive gold-standard to assess myocardial collateral pathways. CFIp is determined by simultaneous measurement of mean aortic pressure (Pa, mm Hg), distal coronary occlusive (wedge) pressure (Pw, mm Hg) and central venous pressure (Pv, mm Hg). The index is calculated as CFIp=(Pw-Pv)/(Pa-Pv). The pressure derived fractional flow reserve (FFR) and the index of microcirculatory resistance (IMR) are assessed as secondary invasive endpoints to investigate the effect of ECP on the myocardial vasculature. The non-invasive secondary endpoints include symptoms (CCS and NYHA classification), treadmill-testing and analysis of shear-stress related soluble proteins. CONCLUSIONS: The Art.Net.-2 Trial will report within the next months whether direct evidence can be brought that ECP promotes coronary collateral growth in patients with stable angina pectoris.


Assuntos
Circulação Colateral/fisiologia , Doença da Artéria Coronariana/fisiopatologia , Doença da Artéria Coronariana/terapia , Circulação Coronária/fisiologia , Contrapulsação , Adulto , Idoso , Idoso de 80 Anos ou mais , Pressão Venosa Central/fisiologia , Vasos Coronários/fisiologia , Teste de Esforço , Humanos , Pessoa de Meia-Idade , Pletismografia , Estudos Prospectivos , Resistência Vascular/fisiologia
15.
J Mol Cell Cardiol ; 47(3): 352-8, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19406126

RESUMO

Mutations in a variety of myofibrillar genes cause dilated cardiomyopathy (DCM) in humans, usually with dominant inheritance and incomplete penetrance. Here, we sought to clarify the functional effects of the previously identified DCM-causing TTN 2-bp insertion mutation (c.43628insAT) and generated a titin knock-in mouse model mimicking the c.43628insAT allele. Mutant embryos homozygous for the Ttn knock-in mutation developed defects in sarcomere formation and consequently died before E9.5. Heterozygous mice were viable and demonstrated normal cardiac morphology, function and muscle mechanics. mRNA and protein expression studies on heterozygous hearts demonstrated elevated wild-type titin mRNA under resting conditions, suggesting that up-regulation of the wild-type titin allele compensates for the unstable mutated titin under these conditions. When chronically exposed to angiotensin II or isoproterenol, heterozygous mice developed marked left ventricular dilatation (p<0.05) with impaired fractional shortening (p<0.001) and diffuse myocardial fibrosis (11.95+/-2.8% vs. 3.7+/-1.1%). Thus, this model mimics typical features of human dilated cardiomyopathy and may further our understanding of how titin mutations perturb cardiac function and remodel the heart.


Assuntos
Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Proteínas Musculares/genética , Proteínas Quinases/genética , Alelos , Animais , Conectina , Cruzamentos Genéticos , Análise Mutacional de DNA , Modelos Animais de Doenças , Insuficiência Cardíaca , Heterozigoto , Camundongos , Modelos Genéticos , Mutação , Fenótipo , RNA Mensageiro/metabolismo , Fatores de Tempo
16.
Circulation ; 117(22): 2893-901, 2008 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-18506004

RESUMO

BACKGROUND: Left ventricular noncompaction constitutes a primary cardiomyopathy characterized by a severely thickened, 2-layered myocardium, numerous prominent trabeculations, and deep intertrabecular recesses. The genetic basis of this cardiomyopathy is still largely unresolved. We speculated that mutations in sarcomere protein genes known to cause hypertrophic cardiomyopathy and dilated cardiomyopathy may be associated with left ventricular noncompaction. METHODS AND RESULTS: Mutational analysis in a cohort of 63 unrelated adult probands with left ventricular noncompaction and no other congenital heart anomalies was performed by denaturing high-performance liquid chromatography analysis and direct DNA sequencing of 6 genes encoding sarcomere proteins. Heterozygous mutations were identified in 11 of 63 samples in genes encoding beta-myosin heavy chain (MYH7), alpha-cardiac actin (ACTC), and cardiac troponin T (TNNT2). Nine distinct mutations, 7 of them in MYH7, 1 in ACTC, and 1 in TNNT2, were found. Clinical evaluations demonstrated familial disease in 6 of 11 probands with sarcomere gene mutations. MYH7 mutations segregated with the disease in 4 autosomal dominant LVNC kindreds. Six of the MYH7 mutations were novel, and 1 encodes a splice-site mutation, a relatively unique finding for MYH7 mutations. Modified residues in beta-myosin heavy chain were located mainly within the ATP binding site. CONCLUSIONS: We conclude that left ventricular noncompaction is within the diverse spectrum of cardiac morphologies triggered by sarcomere protein gene defects. Our findings support the hypothesis that there is a shared molecular etiology of different cardiomyopathic phenotypes.


Assuntos
Actinas/genética , Miosinas Cardíacas/genética , Cardiomiopatias/genética , Ventrículos do Coração/anormalidades , Mutação , Cadeias Pesadas de Miosina/genética , Sarcômeros/genética , Troponina T/genética , Cardiomiopatias/etiologia , Estudos de Coortes , Análise Mutacional de DNA , Coração/crescimento & desenvolvimento , Humanos , Sarcômeros/química
17.
Am J Hum Genet ; 82(4): 809-21, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18313022

RESUMO

Autosomal-dominant arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) causes sudden cardiac death and is characterized by clinical and genetic heterogeneity. Fifteen unrelated ARVC families with a disease-associated haplotype on chromosome 3p (ARVD5) were ascertained from a genetically isolated population. Identification of key recombination events reduced the disease region to a 2.36 Mb interval containing 20 annotated genes. Bidirectional resequencing showed one rare variant in transmembrane protein 43 (TMEM43 1073C-->T, S358L), was carried on all recombinant ARVD5 ancestral haplotypes from affected subjects and not found in population controls. The mutation occurs in a highly conserved transmembrane domain of TMEM43 and is predicted to be deleterious. Clinical outcomes in 257 affected and 151 unaffected subjects were compared, and penetrance was determined. We concluded that ARVC at locus ARVD5 is a lethal, fully penetrant, sex-influenced morbid disorder. Median life expectancy was 41 years in affected males compared to 71 years in affected females (relative risk 6.8, 95% CI 1.3-10.9). Heart failure was a late manifestation in survivors. Although little is known about the function of the TMEM43 gene, it contains a response element for PPAR gamma (an adipogenic transcription factor), which may explain the fibrofatty replacement of the myocardium, a characteristic pathological finding in ARVC.


Assuntos
Displasia Arritmogênica Ventricular Direita/genética , Insuficiência Cardíaca/genética , Proteínas de Membrana/genética , Mutação de Sentido Incorreto , Penetrância , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Displasia Arritmogênica Ventricular Direita/complicações , Displasia Arritmogênica Ventricular Direita/patologia , Criança , Cromossomos Humanos Par 3/genética , Análise Mutacional de DNA , Feminino , Testes Genéticos , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/patologia , Humanos , Expectativa de Vida , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Dados de Sequência Molecular , Miocárdio/patologia , Linhagem , Mapeamento Físico do Cromossomo , Conformação Proteica , Fatores Sexuais
18.
Biomed Tech (Berl) ; 52(1): 50-5, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17313334

RESUMO

Animal models of cardiovascular diseases allow to investigate relevant pathogenetic mechanisms in detail. In the present study, the mutations Asp175Asn and Glu180Gly in alpha-tropomyosin (TPM1), known cause familiar hypertrophic cardiomyopathy (FHC) were studied for changes in hemodynamic parameters and spontaneous baroreflex regulation in transgenic rats in comparison to transgenic and non-transgenic controls by telemetry. Heart rate variability (HRV) and blood pressure variability (BPV) were analyzed using time- and frequency domain, as well as non-linear measures. The dual sequence method was used for the estimation of the baroreflex regulation. In transgenic rats harboring mutated TPM1, changes in HRV were detected during exercise, but not at rest. Both mutations, Asp175Asn and Glu180Gly, caused increased low frequency power. In addition, in animals with mutation Asp175Asn a reduced total HRV was observed. BPV did not show any differences between all transgenic animal lines. During exercise, a strong increase in the number of bradycardic and tachycardic fluctuations accompanied with decreased baroreflex sensitivity (BRS) was detected in animals with either TPM1 mutation, Asp175Asn or Glu180Gly. These data suggest, that the analysis of cardiac autonomic control, particularly of baroreflex regulation, represents a powerful non-invasive approach to investigate the effects of subtle changes in sarcomeric architecture on cardiac physiology in vivo. In case of mutations Asp175Asn or Glu180Gly in TPM1, early detection of alterations in autonomic cardiac control could help to prevent sudden cardiac death in affected persons.


Assuntos
Barorreflexo , Pressão Sanguínea , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/fisiopatologia , Diagnóstico por Computador/métodos , Frequência Cardíaca , Tropomiosina/genética , Algoritmos , Substituição de Aminoácidos , Animais , Animais Geneticamente Modificados , Sistema Nervoso Autônomo/fisiopatologia , Simulação por Computador , Modelos Animais de Doenças , Retroalimentação/fisiologia , Modelos Cardiovasculares , Mutagênese Sítio-Dirigida , Mutação , Ratos/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Am J Hum Genet ; 79(6): 1081-8, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17186466

RESUMO

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a genetically heterogeneous heart-muscle disorder characterized by progressive fibrofatty replacement of right ventricular myocardium and an increased risk of sudden cardiac death. Mutations in desmosomal proteins that cause ARVC have been previously described; therefore, we investigated 88 unrelated patients with the disorder for mutations in human desmosomal cadherin desmocollin-2 (DSC2). We identified a heterozygous splice-acceptor-site mutation in intron 5 (c.631-2A-->G) of the DSC2 gene, which led to the use of a cryptic splice-acceptor site and the creation of a downstream premature termination codon. Quantitative analysis of cardiac DSC2 expression in patient specimens revealed a marked reduction in the abundance of the mutant transcript. Morpholino knockdown in zebrafish embryos revealed a requirement for dsc2 in the establishment of the normal myocardial structure and function, with reduced desmosomal plaque area, loss of the desmosome extracellular electron-dense midlines, and associated myocardial contractility defects. These data identify DSC2 mutations as a cause of ARVC in humans and demonstrate that physiologic levels of DSC2 are crucial for normal cardiac desmosome formation, early cardiac morphogenesis, and cardiac function.


Assuntos
Displasia Arritmogênica Ventricular Direita/genética , Desmocolinas/genética , Mutação , Adulto , Sequência de Aminoácidos , Animais , Displasia Arritmogênica Ventricular Direita/patologia , Sequência de Bases , Desmocolinas/metabolismo , Embrião não Mamífero , Coração/embriologia , Humanos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Contração Miocárdica/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética
20.
J Clin Invest ; 116(7): 1825-8, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16823481

RESUMO

Mutations in genes encoding desmosomal proteins have been identified as the major cause of arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVC), in which the right ventricle is "replaced" by fibrofatty tissue, resulting in lethal arrhythmias. In this issue of the JCI, Garcia-Gras et al. demonstrate that cardiac-specific loss of the desmosomal protein desmoplakin is sufficient to cause nuclear translocation of plakoglobin, upregulation of adipogenic genes in vitro, and a shift from a cardiomyocyte to an adipocyte cell fate in vivo (see the related article beginning on page 2012). This evidence for potential Wnt/beta-catenin signaling defects sets the scene for a comprehensive exploration of the contributions of this pathway to the pathophysiology of ARVC, not only through perturbation of cardiac patterning and development, but also through effects on myocardial differentiation and physiology.


Assuntos
Displasia Arritmogênica Ventricular Direita/metabolismo , Desmoplaquinas/metabolismo , gama Catenina/metabolismo , Animais , Displasia Arritmogênica Ventricular Direita/genética , Desmoplaquinas/genética , Regulação da Expressão Gênica , Placofilinas/genética , Placofilinas/metabolismo , Transdução de Sinais/fisiologia , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...